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second sample has much less user concurrency. but significant paging and system

overhead.

Statistical cluster analysis is used to extract a state transition model to
jointly characterize user concurrency and system overhead. A skewness factor is
introduced and used to bring out the effects of unbalanced clustering when deter-

mining states with significant transitions.

The results from the models show that during the collection of the first
sample, the system was operating in states of high user concurrency approxi-
mately 75% of the time. The second workload sample shows the system in high
user concurrency states only 26% of the time. In addition, it is ascertained that
high system overhead is usually accompanied by low user concurrency. The
analysis also shows a high predicatability of system behavior for both work-
loads. This predictability 1s largely due to slow changes in system states. In
particular, states with extremely high values of paging or user concurrency are
usually preceded by states with less paging and user concurrency, much like
stair climbing. The opposite effect is observed when the machine leaves these

extreme states.
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This paper presents an analysis of an Alliant FX/8 system running Xylem
(Cedar's operating system) at the University of Illinois Center for Supercomput-
ing Research and Development. Results for two distinct, real. scientific work-
loads executing on an Alliant FX/8 are discussed. A combinati‘o‘n‘ of user con-
currency and system overhead measurements was taken for both workloads.
Preliminary analysis shows that the first sampled workload is comprised of con-
sistently high user concurrency. low system overhead. and little paging. The
second sample has much less user concurrency, but significant paging and system

overhead.

Statistical cluster analysis is used to extract a state transition model to
jointly characterize user concurrency and system overhead. A skewness factor is
introduced and used to bring out the effects of unbalanced clustering when deter-

mining states with significant transitions.

The results from the models show that during the collection of the first
sample, the system was operating in states of high user concurrency approXi-
mately 75% of the time. The second workload sample shows the system in high
user concurrency states only 26% of the time. In addition, it is ascertained that
high system overhead is usually accompanied by low user concurrency. The
analysis also shows a high predicatability of system behavior for both work-
loads. This predictability 1s largely due to slow changes in system states. In
particular, states with extremely high values of paging or user concurrency are
usually preceded by states with less paging and user concurrency, much like

stair climbing. The opposite effect is observed when the machine leaves these

extreme states.
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CHAPTER ONE

INTRODUCTION

The evaluation of a computer system, in particular, a multiprocessor, is an important
step in optimizing the design of the system and improving application programs for it. Too
often in the field of parallel processing this evaluation consists of determining numerical
performance indices, such as MFLOPS, for the machine executing a standard benchmark.
Although these indices are useful in detecting global weaknesses in the system, they are
unable to provide a detailed analysis. This type of evaluation is also unable to indicate how
the machine will perform in the local environment. It is useful to have methods which
provide information about the system’s performance under a certain workload, along with
insight into how the workload and system are interacting. With such methods. the system

can be more easily tuned for specific applications and vice versa.

This thesis presents an analysis of an Alliant FX/8 system running the Cedar! operat-
ing system, Xylem, at the University of Illinois Center for Supercomputing Research and
Development. Results for two distinct, real, scientific workloads executing on an Alliant
FX/8 are presented. For this evaluation, a combination of user concurrency and system
overhead (e.g.. paging. and context switches) measurements are collected. Statistical clus-
tering is performed on these measurements to identify commonly recurring patterns of
resource usage. State transition models are extracted and interpreted for both sampled
workloads to obtain practical insight into the system behavior. Skewness factors are then
calculated for each interstate transition in the identified model and used to determine

significant transitional relationships among the states of the machine.

The results show that during the collection of the first sample, the system was operat-

ing in states of high user concurrency approximately 75% of the time. The second sample,

1The Cedar project is a parallel supercomputing experiment which consists of interconnecting Alliant FX/8’s
to a large shared global memory (1], (2], and (3] Each Alliant is known as a cluster of the Cedar machine. The
first version of Cedar will consist of two clusters.



on the other hand, captures a system operating in states of high user concurrency only 26%
of the time. In addition, it was discovered that high system overhead is usually accom-
panied by low user concurrency. The analysis also indicates that for both workloads, the
state of the system was highly predictable. This predictability was largely due to slow
changes in system states. In particular, states with extremely high values of paging or user
concurrency are usually preceded by states with less paging and user concurrency. much
like stair climbing. The opposite effect is observed when the machine leaves these extreme

states.

1.1. Related Research

There have been many performance and concurrency studies performed on multipro-
cessor systems. Most of these have employed simulation and analytical-based techniques
(4]. [5]. [6]. [7]. without investigating the effect of a real workload. There have also been a
few performance evaluation studies done on the Alliant machine [8], [9]. [10], and [11].
Most of these are concerned with the use of tools for evaluation. For instance, McGuire and
Iyer [8] instrument the Alliant FX/8 to measure concurrency present in a real workload. In
their work, total concurrency is measured ignoring the distinction between user and system
related concurrency. Measurements of user concurrency alone are particularly important if
the evaluation is being done as a step in optimizing an application program. For this reason,

this study primarily deals with user concurrency.

Unlike the above studies, this study does not only pursue paforﬁmu indices for the
system but also extracts models of the executing workloads. Very little work has been done
in this area for multiprocessor systems. This thesis presents two case studies in identifying
useful models of real workloads on a multiprocessor. These models are also interpreted to
gain insight into the interaction of the workload and system and to determine the amount

of concurrency in the workloads.



A major step in obtaining the workload models is statistical clustering. In recent
years, statistical clustering has found many uses in the field of computer evaluation.
Devarakonda and Iyer [12] use clustering as a step in creating transition models which are
then used to predict resource usage. Hsueh et al. [13] use similar techniques to create per-
formability models for a multiprocessor system. Ferrari [14], on the other hand, uses clus-

tering in the creation of artificial workloads.

The next chapter contains a discussion of the measured environment. Chapter 3 intro-
duces the measurements used in this study and explains how they were obtained. A
number of preliminary results for the collected samples are presented in Chapter 4. These
provide a better understanding of the two workloads sampled and their interaction with
the machine. Following this in Section 5.1 is a discussion of the clustering procedure and
the method used to create the transition models. In addition, this section introduces the
skewness factor, provides its definition, and discusses the reasons for it. The identified
workload models and thorough interpretations of them can be found in Sections 5.2 and

5.3. Chapter 6 summarizes the major results and suggests possibilities for future work.



CHAPTER TWO
THE MEASUREMENT ENVIRONMENT

The measurements for this study were taken from real, scientific workloads being exe-
cuted by an Alliant FX/8 on weekday afternoons. The FX/8 is a multiprocessor mini-
supercomputer with a 32 Megabyte shared global memory [15]. It can best be understood as
two groups or clusters? of processors. The main group, the Computational Element (CE)
cluster, consists of eight processors. These either work together concurrently in the
clustered configuration or separately in the detached configuration. When the CEs are
detached, they can be used as eight Separate processors working on different jobs, or groups
of them can be used to multiprocess the same job. When in the clustered configuration, the

concurrency control bus synchronizes the eight CEs to concurrently process a single job.

The second group of processors on the measured Alliant consists of three Motorola
MC68012 microprocessors called the Interactive Processors (IPs). For the situation being
studied, the IPs handle all accesses to secondary memory and interactive user work such as
editing jobs. It is important to note that the operating system on the measured machine is
Xylem, which was specifically designed for the Cedar supercomputer. and not Concentrix,
Alliant’s operating system. For this reason. this thesis is more correctly viewed as an
analysis of a single cluster Cedar supercomputer, and not as an analysis of the Alliant
FX/8. This distinction may seem slight, but it becomes important later in this thesis

(Chapter 4).

The measured FX/8 is used for application and algorithm development at the Univer-
sity of Illinois’ Center for Supercomputer Research and Development (UICSRD). Work
being done on the machine varies from the creation of a mathematical library containing

optimal versions of commonly used algorithms such as fast Fourier transforms and

*The use of the word cluster is admittedly overused in this thesis. The Alliant FX/3s are clusters of the
Cedar, while the FX/8’s have their own clusters. Later, cluster models will be introduced. This confusion was
inevitable, in order to maintain consistency with the results in the other literature on these subjects.



solutions of sparse linear systems, to the development of a highly concurrent circuit simu-
lator. In addition, the newly developed Cedar operating system Xylem was being tested
and debugged during the course of this work. This diverse environment allowed us to
measure programs specifically designed to optimize the concurrency allowed by Cedar's
architecture along with jobs that were suboptimal. In general, the measured workload is

representative of many scientific, parallel program developmental situations.



CHAPTER THREE
MEASUREMENTS

Two software facilities developed at UICSRD were used to measure system behavior.
The first was used to measure concurrency exploited on the CE cluster, and the second was
used to measure system related overhead. These facilities monitored the system con-

currently so both types of measurements were collected simultaneously.

To determine the amount of concurrency in the workload, a software program using a
high resolution (10 microsecond) timer measured the amount of time each processor was
executing system and user code, as well as the amount of time each processor was idle.
These measurements were taken separately for the two CE configurations (i.e., detached and
clustered). In this way. the percentage of time the CEs were clustered and executing user
code (CONCUSER) was determined. The CONCUSER parameter directly corresponds to

the amount of user concurrency in the workload and will be high for observations with
well-tuned applications running.?

System overhead was measured using an operating system facility, which monitors
and collects data on virtual memory and system operations such as paging, swapping, sys-

tem calls, context switches, and file searches. Of the approximately 150 measurements

Table 1
Virtual Memory Measurements

Variable Description
context switch (. preemption of currently running program
device interrupt | access to devices
page in access to disk to bring pages into main memory
page out access to disk to write pages out
pages paged in number of pages brought into main memory
| pages paged out | number of pages written to the disk

3 Por this study the time spent in detached configuration with more than one CE executing user code is not
considered concurrent operation. This happens infrequently (as will be seen in the next chapter), and usually on

tWo separate programs.



available, those sampled for this study are summarized in Table 1. It should be noted that
the O/S facility does not provide separate measurements for each processor, but running
totals for all the processors combined. For instance, the context switch measurement con-

tains the total number of context switches that have occurred on all eight CEs plus the

three IPs.

In addition to these measurements, the parameters summarized in Table 2 were calcu-
lated. Notice that some of the percentages in the table are calculated over the entire obser-
vation period, and others are calculated just over the time spent in a specific configuration.
The parameters CEUT and IPUT refer to the utilization of the entire CE and IP complex,

respectively, and are defined as follows:

7 7
Y CEj user time + ¥ CEj system time + 8*((cluster user time) + (cluster system time))
J=0 j=0
CEUT =
(number of CEs)* (sampling period)
2 2
Y IPj user time + Y IPj system time
J=0 J=0
IPrur

- (number of IPs)* (sampling period)

Table 2
Utilization Measurements
Measure Description
CONCUSER | % of time CEs clustered and running user code
clsyst % of cluster time spent running system code
cluset % of cluster time spent running user code
CLUSTIM % of time spent in the cluster configuration
ipsyst % of time IPs spent running system code
CEUT CE utilization
IPUT IP utilization




All measurements discussed above were sampled simultaneously every 45 seconds.®
Each 45-second period is one observation of the system. and the measurements collected
during that period depict the state of the system for that observation. The length of the
observation was experimentally determined and chosen so that it would best correspond to

the length of an actual, physical state of the machine.

The observation length was initially tuned with respect to paginé since this was the
most elusive parameter. Early measurements indicated paging activity most often came in
ninety-second blocks surrounded by periods of few disk accesses. The 45-second (90
divided by 2) length was then chosen so that paging activity could be captured without los-
ing the majority of the head or tail of its block to the neighboring observations. Ideally
then, a paging block would be captured as two 45-second high paging observations. The
45-second interval worked well with the other parameters, 50 it was kept as the period of

time defining a state for this machine and workload environment.

Many samples of the Alliant workload at UICSRD have been collected and studied.
Each sample is generally two to three hours long.’ In this thesis, two markedly different
samples are presented. The first sample was taken over a 138-minute period. The second
sample, on the other hand, is 168 minutes long. To provide a broad understanding of the
two workloads and their interactions with the system, some preliminary statistical analysis

is presented in the next chapter.

‘T am using two separate measuring facilities 30 the measurements were not sampled exactly simuitaneously,
but sequentially. The VM facility sampled its measurements, and this was immediately followed by the
concurrency facility. The gap between the sampling was of little consequence to this work because it was very
small in relation to the 45-second sampling interval.

SLarger samples would have been collected but continuous periods of substantial workload without a system
failure were fairly short (2-3 hours). This was due to the operating system still being in its infancy and therefore
not being completely installed or debugged.



CHAPTER FOUR

PRELIMINARY ANALYSIS

4.1. Means and Standard Deviations

Table 3 contains observation means and standard deviations for each parameter stu-
died. The results for Sample One show that the CE complex was coﬁsiétently well utilized
(CEUT mean = 0.723, std. dev. = 0.077). On the other hand, the low mean (0.393) and
high standard deviation (0.246) shown for the CE utilization of Sample Two implies either
an ill-tuned system or a workload consisting of bursts of work surrounded by idleness.

The cluster model (Chapter 5) will address this in more detail.

High standard deviations are seen for all measurements collected for Sample Two.
This indicates that the sample captured a range of different activity. In contrast, the low
standard deviations of the parameters for Sample One indicate that the captured workload

had consistent behavior throughout the sampling.

A closer examination of Table 3 shows the imbalance between the mean IP and mean
CE utilizations: 0.304 to 0.723 for Sample One, and 0.271 to 0.393 for Sample Two. The
low standard deviations for the IP utilizations indicate that the underutilization of the IPs
and the imbalance of work between the processor complexes is fairly steady throughout the
observations. This imbalance. especially for Sample One, may be partially attributed to the
low paging activity. (All accesses to disk must be made through IPO, which would cause the
utilization of the IP complex to increase and reduce this imbalance.) A second cause of this
imbalance is rooted in the switch from the Concentrix to the Xylem operating system.®
Based on these results, it seems appropriate to ofioad some work from the CEs to the IPs.

More study is necessary to quantify the benefit, if any. of such a transfer.

€A good portion of Xylem is executed by the CEs. This is done because only the CEs can access the Cedar
giobal memory. The Alliant, on the other hand, was designed to execute a good deal of the O/S with the IPs.
Therefore, if the same workload was run under Concentrix, the IP/CE imbalance would lessen.
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Table 3
Parameter Means and Standard Deviations
P tor Sample One Sample Two
arame mean std. dev. mean std. dev.
context switches 1782.508 508.201 1503.382 665.230
device interrupts | 20389.339 | 5976.630 || 18459.958 | 11929.022
page ins 0.109 1.016 24.747 66.278
pages paged in 35.880 112.737 159.089 360.887
page outs 1.869 14.630 18.116 | ° 40.957
pages paged out 34.038 269.249 339.938 770.356
CE utilization 0.723 0.077 0.393 0.246
IP utilization 0.304 0.078 0.271 0.101
CLUSTIM 71.632 10.472 63.920 14,971
cluset 90.165 4.946 39.879 34.000
clsyst 9.835 4.946 21.727 15.159
ipsyst 23.716 5.325 17.231 4.146
CONCUSER 64.625 10.470 27.028 26.028

Table 3 clearly shows the paging differences between the two sampled workloads. The
first sample contained on average 0.109 accesses to the disk for pages being brought into
memory and 1.869 accesses for pages written to the disk per observation. In contrast, Sam-
ple Two contained an average of 24.7 accesses to the disk for pages ins and an average of
18.1 accesses for page outs per observation. This cannot be considered a large amount of
paging. but it is certainly enough to have a significant effect on the behavior of the system.
The standard deviations for the paging activities of both samples are quite high, suggesting
intervals of high paging activity in addition to long periods of little or no paging. The long
periods of little paging activity are easily explained by the large 32-KB physical memory
found in the Alliant.

As mentioned earlier, the parameter corresponding to user concurrency is CONCUSER.
It is obvious from Table 3 that Sample One captured a good deal more user concurrency
than Sample Two (mean Sample One CONCUSER = 65%, mean Sample Two CONCUSER =
26%). It is interesting to note that although the amount of user concurrency in the two
samples is drastically different, the percentage of time spent in the clustered configuration
(CLUSTIM) is very similar (CLUSTIM mean = 71% and 64%, CLUSTIM std. dev. = 10 and
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15) for the two samples. An explanation of this phenomenon is discussed in the next sec-

tion.

4.2. Individual System/User/Idle Times

For the majority of this thesis, the CE and IP complexes are treated as indivisible
units. In this section though, the behavior of the individual prmm is studied. Tables 4
and 5 show the percentage of time each processor spends executing system and user code,
along with the percentage of time the processors are idle. The bars shown for the indivi-
dual CEs, CEO-CE7. pertain to the time spent in detached configuration. The cluster bar
(CL) shows the breakdown for the CEs’ utilizations while in the clustered configuration
(only one bar is needed because all CEs work on the same job in this configuration). It is
important to realize that these percentages are not calculated over the whole period, but
only the period in which the CEs are in the specified configuration. For example, Table 4
shows that while detached, CE7 is idle 45% of the time, executing system code 30% of the

time, and executing user code 25% of the time.

Tables 4 and S provide the explanation to the question left unanswered at the end of
the last section. The difference in user concurrency exhibited in the two samples is not
explained by the percentage of time the CEs were clustered. but by the type of work they
were doing while clustered. While the machine was clustered during the collection of Sam-
ple One, the CEs were executing user code about 90% of the time and system code about
10% of the time. The cluster was never idle. Sample Two, on the other hand, captures an
idle cluster about 39% bf the time. This idleness while clustered is the cause of the drastic

difference in the amount of user concurrency observed in the two samples.

Tables 4 and 5 confirm the underutilization of the IPs. They also show that the work
done on the IPs is evenly balanced. Another point of interest on these tables is the low util-

ization of the CEs while in the detached mode. CEO and CE1 are never used; CE2 is used
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only sparingly in Sample One and not at all in Sample Two, and CE3 and CE4 are only
slightly used. The majority of the work in the detached mode is done by CE6 and CE7.
These results suggest that a better design may be to allow the four lower CEs to form their
own cluster. In this way, when the detached mode is needed, the upper four processors can
break free and handle the work. Meanwhile, the lower four stay in clustered configuration
and continue to service the jobs waiting on the cluster queue. With this method, the utili-

zation of the CE complex will most likely improve.

4.3. Correlations

Correlations between all combinations of parameters were calculated to investigate the
relationships and dependencies among the measurements taken. The most interesting
results are presented in Table 6. The first entry shows that although page ins and page outs
are highly correlated for Sample Two, they are not for Sample One. This is probably a
result of the low paging activity captured in Sample One, coupled with the presence of page

reclaims.

The correlations between CEUT and IPUT are also very interesting because they lead
to completely opposite conclusions for the two samples. The positive correlation for Sam-
ple Two (0.6266) suggests that the IP and CE utilizations follow the same general pattern.
They are both high or both low for the same intervals of time. This indicates that the sam-

ple captured a generally light workload which contained scattersd periods of high activity.

Table 6
Selected Correlations

Sample One | Sample Two

Parameters Correlation | Correlation
page ins page outs -0.01382 0.66765
CEUT IPUT -0.79943 0.62660
context switches ipsyst 0.91161 0.78697
device interrupts clsyst 0.89835 0.69898
CEUT CLUSTIM 0.96672 0.38059
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During these high activity periods, both the CE and IP utilizations increased, resulting in
the high correlation. The negative correlation for Sample One (-0.77184). on the other
hand, indicates that when the CEs are busy, the IPs are not, and vice versa. This is prob-
ably caused by the system's consistent operation in one of two states. In the first state, the
machine spends the majority of its time with the CEs in the clustered configuration execut-
ing user code concurrently (high CEUT, low IPUT). This, of course, i$ the desirable state.
The other state consists of a good deal of system work being executed by the machine caus-

ing the CEs to spend more time detached (low CEUT, high IPUT).

The correlation between ipsyst and context switches was high for both samples. indi-
cating that an increase in context switches (which is probably caused by an increase in the
amount of multiprogramming) is generally accompanied by an increase in system activities
that must be performed by the IPs. The correlation between device interrupts and clsyst
was likewise found to be high for both samples. Interestingly, a similarly high correlation
was not found between device interrupts and ipsyst. This means that an increase in device

interrupts is generally accompanied by system activity which needs to be executed on the

cluster, but not on the IPs.

The correlations between CEUT and CLUSTIM were included to show that although
at times the percentage of time the CEs spend clustered is highly related to the CE utiliza-

tion, this is not always the case.

4.4. Summary of Preliminary Analysis

In summary, the prelunumry analysis shows that Sample One captured a system with
high, steady CE utilization, little paging. and a good deal of user concurrency. This is the
result of a relatively unchanging workload. Sample Two, on the other hand, is made up of
observations with high variability in their CE utilization, and the amount of paging they

capture. On average, the sample also shows very little user concurrency. This is the result
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of a generally light workload with bursts of high activity. In addition, it was discovered
that during the collection of both samples. the lower numbered CEs in the detached

configuration and all three IPs were underutilized.
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CHAPTER FIVE

MODEL EXTRACTION

In this chapter state transition models are extracted to quantify the variation in sys-
tem activity for each workload. Four’ parameters were selected to jointly characterize user
concurrency and system overhead. These were IPUT, context switches, CONCUSER, and
pagact (pagact = page ins + page outs, the total number of accesses to disk). Each observa-
tion is essentially a point in four-dimensional space. Statistical clustering analysis is used
to identify similar classes (clusters) in this space. Each cluster is then used to depict a sys-
tem state, and a transition model (consisting of intercluster transition probabilities) is
developed. Following this. skewness factors are calculated and used to detect significant
transitional relationships between the states of the system. Before all this is done, more

detailed descriptions of the above methods are presented.

5.1. Clustering, State Transition Models, and Skewness Factors

The cluster models were obtained using the FASTCLUS procedure from the SAS
software package ([16], [17], and [18]). This procedure uses a K-means clustering method,
grouping observations into clusters that minimize the intracluster distances between points,
while maximizing the intercluster distances. The algorithm first chooses a set of K seeds (K
is the number of clusters the user has specified), and uses these to create the first iteration
of clusters by grouping each observation with the seed that is nearest to it. (Euclidean dis-
tances are used to determine the closeness of points.) The means for each of the initial clus-
ters are then used as seeds to create the second iteration of clusters. The number of itera-
tions to be performed can be chosen by the user. but usually only two or three are needed

to obtain adequate cluster models.

The collected data were normalized so that each measurement had a mean of zero and
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a standard deviation of one. This was done so that parameters with the largest range of

values did not dominate the clustering procedure.

In this type of modeling, it is often advisable to exclude points with extreme values
when forming the initial clusters. These excluded points are then added to the nearest clus-
ter once the initial model is constructed. In this way, these outliers cannot form their own
clusters of just two or three members. In this study. this Uechniqﬁe was used sparingly.
Only two observations were excluded from the initial clustering of Sample One, and no
observations were omitted from Sample Two. Few observations were discarded because in

order to let the data define the clusters. not force the data into clusters.

The cluster models obtained are studied from three different perspectives, each pro-
viding different types of results. Each was then useful for different applications. At the
most basic level, the clusterings of observations are studied verbatim to determine the
characteristics of the different states in which the machine is found. By the number of
observations in each cluster, the percentage of time the machine is in each of these states

may be determined. From this, the efficiency of the machine may be ascertained.

The second form of analysis requires the creation of a state transition model, which
consists of the probabilities for each intercluster (interstate) transition. These probabilities
are easily estimated from the collected data with the following formula (Pi) is the proba-
bility of transition from state i to state j):

_ observed number of transitions from state i to state j
Y observed number of transitions from state i

These transition probabilities are used to predict forthcoming states of the machine. They

provide a solid understanding of the relationships between states.

The final method used to interpret the extracted cluster model is my own technique
which consists of computing skewness factors for each transition. These skewness factors

quantify the degree to which transitional relations between states were caused by random
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transitions. More specifically, the skewness factor determines the skewness of a transition
probability with respect to the transition probability that would be obtained if each inter-
observation transition was equally likely. The skewness factor (S;,) of a transition from

state i to state j is defined as

_ observed number of transitions from state i to state j

v probable* number of transitions from state i to state j

*Assuming that the transition to any observation is
equally likely regardless of the cluster it is in.

The skewmess factors bring out the effect of unbalanced clusters and quantifies
significant transitions between clusters. A significant transition is one that may have -
underlying system-related cause, and is not just the result of random action. A skewness

factor near unity indicates that there is probably not a significant transition between states.

The usefulness of the skewness factor can be best illustrated with an example. Sup-
pose a cluster model of 1000 observations was created with cluster A containing 40 obser-
vations, cluster B containing 450, and the rest of the observations spread among the other
clusters. Now suppose 30 transitions were observed from cluster B to cluster A. The tran-
sition probability for this transition would be 0.0667, (30/ 450). This makes the transition

30
appear insignificant. In contrast, the skewness factor is 1.663. (———). which indi-
450*

999

cates that the transition from cluster A to cluster B is a significant transition. In other
words. the transition cannot be attributed to random activity. Upon further inspection it
becomes clear that the skewness factor has indeed pinpointed a noteworthy transition.
Notice that 75% of all transitions into state A come from state B. There is more than likely
a system-related reason for this. This transition is even more noteworthy if cluster A
represents an extremely desirable or undesirable state. because it provides information on

the probable state the machine is operating in before the targeted state is reached. This
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information would be extremely useful in the tuning of a system to an application, or vice

versa.

In the next example. the skewness factor is shown to determine that a transition pro-
bability that appears to point to a relation between states, may easily have been the result
of random transitions. Assume 1000 observations were clustered in three clusters as shown
in Figure 1. Cluster i contains 100 observations, cluster j contains 300 observations, and
cluster k contains 600 observations. In addition, assume there were 30 transitions from
cluster i to cluster j, 60 transitions from cluster i to cluster k. and 10 self-returning transi-
tions to cluster i. The corresponding transition probabilities would be: PT,=0.6. PT;;=0.3,
and PT,;=0.1. From the transition probabilities alone, it appears that the transition from
cluster i to cluster k is fairly significant. In other words, the transition probabilities point
to a relationship between cluster i and cluster k. If the skewness factors are calculated for
these transitions, it is found that they are all close to one (S, = S; =S; =0.999). This
indicates that if transitions between observations were completely random, approximately
the same transition probabilities ( PT,; =0.6, PT,=0.3, and PT,;=0.1 ) would be obtained
for this model. Basically then, contrary to what the transition probabilities suggest for the

transitions in question, there is no evidence to indicate that any of them are significant.

Figure 1
Insignificant Transitions
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Therefore, there.is no reason to believe that there exists any underlying relationship

between the states of the system represented in the cluster model.

5.2. Cluster Analysis for Sample One

The cluster model extracted from Sample One is summarized in Table 7. The means
given in this table are calculated from the normalized values of each 6béervation's measure-
ments. They do not, therefore, reflect the actual values obtained, but instead. the values of
the observations relative to one another. Observations contained in the first cluster of this
model. cluster one, capture a system with many context switches occurring, high IP utiliza-
tion, and very little user concurrency. Cluster two has similar characteristics, except they
are not as extreme. There are fewer context switches and lower IP utilization. The user
concurrency is also lower. which leads us to conclude that cluster two depicts the same sort
of machine state as cluster one, with fewer jobs running. The observations in these clusters
were probably caused by a high degree of multiprogramming which did not allow much

concurrency exploitation. Obviously. this is an undesirable state for the parallel computer.

The third cluster. which only accounts for 2.73% of the sample, contains observations
with considerable paging activity. As expected., the paging activity is accompanied by
above-average IP utilization and context switching. These observations also show

extremely low user concurrency.

Table 7
Cluster Means
Sample One

cluster number | % of obs. | context switches | CONCUSER | IPUT | pagact
one 6.01 2.353 -1.113 2.087 -0.135

two 12.02 0.360 -1.281 1.456 -0.135
three 2.73 0.671 -1.211 0.514 4.356
four 26.78 0.356 -0.716 0.124 -0.109

five 30.05 -0.131 0.624 -0.324 | -0.135

six 22.40 -1.156 1.152 -1.117 | -0.112
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The most desirable state, high user concurrency, is captured by the observations found
in clusters five, six. and to a lesser degree, cluster four. Cluster six contains observations
with much more user concurrency, lower IP utilization, and more paging than the observa-
tions in cluster five, which have more concurrency than the observations in cluster four.
Thus. state six is more desirable than state five, which is more desirable than state four. It
is interesting to note that the high user concurrency captured by observations in these clus-
ters is accompanied by rather low IP utilization and few context switches. This lends credi-
bility to the earlier deduction that the machine was executing in two major states while
Sample One was taken (clusters four, five and six depict one state; and clusters one and two

depict the other).

All factors considered, the cluster model extracted shows a very efficient environment.
The system is in a state of extremely high user concurrency approximately 50% of the time
(clusters five and six). with less. but still impressive amounts of concurrency being seen
about 25% of the time (cluster four). The undesirable states are contained within clusters

one and two, and account for only 18% of the sample.

The transition model extracted for Sample One is shown in Figure 2. The correspond-
ing transition probabilities and skewness factors are shown in Table 8. The high transition
probabilities found along the diagonal of this table suggest that for all states (except state
three, where the self-returning probability is only 0.2), there is a good chance the machine
will operate in the same state during the following observation. The skewness factors
confirm this relationship. and show that state three also has an aﬂinit}" to return to itself.
The low transition probability for the self-returning state three transition is caused by the

small size of the cluster depicting it.

An interesting phenomenon brought out by the transition model is the lack of interac-
tion between the high and low concurrency states. The only observed transitions into the

high user concurrency state (six) were from states four, five, or six, which are other states



Figure 2
Transition Model
Sample One

depicting substantial user concurrency. This phenomenon is also seen for transitions into
state five, the state depicting the second highest degree of concurrency in this model. There
are no observed transitions into this state from either of the low concurrency states, one or
two. Correspondingly. there are no observed transitions from the twb high concurrency
states (five and six) into the lowest concurrency state (one). There are also no transitions
from state six. and few transitions from state five into state two. In summary, it can be
concluded that the machine does not experience sudden jumps from high user concurrency
to low user concurrency. or vice versa. Transitions from these extremes are made by step-

ping through intermediate states, such as state four.



Table 8
Transition Probability/Skewness Factor
Sample One
cluster one two three four five six
one -5455/9.02 | .1818/1.50 | .0909/3.31 | .1818/0.68 | .0000/0.00 | .0000/0.00
two -0909/1.50 | .6364/5.26 | .0000/0.00 | .2727/1.01 | .0000/0.00 | .0000/0.00
three | .2000/3.31 | .0000/0.00 | .2000/7.28 | .4000/1.49 | .2000/0.66 | .0000/0.00
four -0417/0.69 | .0833/0.69 | .0417/1.52 | .4167/1.55 .2500/0.83 | .1667/0.74
five -0000/0.00 | .0364/0.30 | .0000/0.00 | .2909/1.08 | .4727/1.56 | .2000/0.89
six -0000/0.00 | .0000/0.00 | .0244/0.89 | .0732/0.27 | .3659/1.21 | .5366/2.38

The near unity skewness factor for all six transitions from state four indicate that the
transitions from this state were almost uniformly distributed among the observations,
regardless of the clusters obtained. Obviously, the behavior of the machine after being in
this state would be the most difficult to predict. As hinted at above, state four acts as the

dispenser, or lowest step. to the extreme states of the system.

A final point of interest is the relationship between state one and state three derived
from the skewness factors. The transition probabilities between these states are not very
high, but the skewness factors are both 3.31. Recall that both states depict a system of low
user concurrency, with state three also corresponding to high paging activity, and state one
corresponding to high IP utilization. The explanation for this interstate relationship is

rooted in the degree of multiprogramming present on the system.

3.3. Cluster Analysis for Sample Two

A summary of the cluster model extracted for Sample Two is presented in Table 9.
The dominant cluster in the model is cluster two which accounts for almost half of the
observations. Although the cluster depicts a near idle system., it should not be regarded as a
weakness of the machine, but as a consequence of monitoring real workloads. (Long
periods of time passed with an extremely light workload while this sample was taken.) For

the analysis then. cluster two is ignored when possible, since it reveals little about the
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system's behavior under a substantial workload. A more revealing cluster. and one which
contains observations similar to the undesirable observations found in clusters one and two
of the previous model, is cluster one. The observations in this cluster show very little user
concurrency, high IP utilization, and a large number of context switches. As before, this
behavior is due to system work associated with multiprogramming. Notice, however, that
for the first sample the undesirable activity was modeled with two states. Similar model-

ing is probably being extracted here, with the second undesirable state being hidden in clus-

ter two.

The desirable states, high user concurrency, are captured by the observations in clus-
ters three and five. Cluster three contains observations with higher user concurrency than
the observations in cluster five. The very high user concurrency captured by cluster three
is accompanied by low IP utilization, little paging activity, and few context switches. Clus-

ter five contains observations with similar, but less extreme, characteristics.

The paging activity that was first discovered in the preliminary analysis is captured
by the observations composing clusters four and six. Of the two. cluster six contains the
observations with the higher paging activity. The high paging is accompanied by high IP
utilization and a large number of context switches. It should also be pointed out that both
paging clusters contain observations having little user concurrency, with cluster six

(extreme paging observations) showing less concurrency than cluster four (medium paging

Table 9
Cluster Means
Sample Two
cluster number | % of obs. | context switches | CONCUSER | IPUT pagact
one 7.11 1.335 -0.631 0.272 -0.435
two 49.78 -0.495 -0.794 -0.770 | -0.433
three 14.2 -0.708 1.609 -0.124 | -0.403
four 12.00 1.290 0.566 1.650 1.566
five 12.44 0.089 1.084 0.846 -0.239
six 4.44 1.945 0.185 1.757 3277
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observations). For both samples, then, paging adversely affected the amount of user con-

currency exploited.

If we work under the assumption that cluster two contains only observations of the
system under a light workload (which is partially. but not wholly true), we can discard
these values for a quick analysis of the efficiency of the system under substantial workload.
With the cluster two observations discarded, the percentages of observations for the other
clusters are doubled. This puts the system in the desirable clusters (three and five) about
52% of the time, which is similar to Sample One. Continuing with the analysis, we find the
system in the paging clusters about 32% of the time, and in the undesirable cluster (one)
about 14% of the time. This low percentage of time in the undesirable state is misleading,

however, because a number of observations taken during substantial workload were

Figure 3
Transition Model
Sample Two
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probably discarded with cluster two. In summary, the analysis shows that while the
machine was under a substantial workload, which was only about half the time, user con-

currency was exploited to high degrees, but not consistently.

The transition model for Sample Two is presented in Figure 3. The corresponding
transition probabilities and skewness factors are shown in Table 10. As in Sample One, the
transition probabilities and skewness factors are largest for trmsitiox;s back to the same
state (diagonal values in the table). This indicates that the state of the system is fairly
steady. The largest of these same state transition probabilities is for cluster two. This rein-
forces the assumption that long periods of light workload, as depicted by the observations

in cluster two, were monitored during this sampling.

The largest skewness factor for a transition from state two, disregarding the self-
returning transition, is that for the transition to state one. This. coupled with the fact that
the only substantial transition probability into cluster two is that from cluster one, indi-
cates that some observations taken during a substantial workload must be contained in
cluster two. This supports the hypothesis that a second undesirable state is hidden in clus-
ter two. This hidden state interacts with the known undesirable state, state one, similarly

to the two undesirable states of Sample One.

Table 10
Transition Probability/Skewness Factor
Sample Two
cluster one two three four five six
one .4375/6.13 | .4375/0.88 | .0000/0.00 | .0000/0.00 | .1250/1.00 .0000/0.00
two .0625/0.88 | .8482/1.70 | .0625/0.44 | .0000/0.00 | .0268/0.21 .0000/0.00
three .0000/0.00 | .1875/0.38 | .5625/3.94 | .0000/0.00 | .2500/2.00 .0000/0.00
four .0000/0.00 | .0000/0.00 | .0370/0.26 | .7407/6.15 .370/0.30 .1852/4.15
five .0357/0.50 | .1429/0.29 | .2143/1.50 | .1071/0.89 | .5000/4.00 .0000/0.00
six .0000/0.00 | .0000/0.00 | .0000/0.00 | .4444/3.69 | .0000/0.00 | .5556/12.44
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The transition probabilities for the two paging clusters (four and six) are especially
interesting because there are few nonzero values. All transitions into or from cluster six
come from or go to cluster four or itself. In other words, the only way to get to state six
(high paging) was through state four (medium paging), and the only way to leave it was
again through state four. This stepping-stone effect goes even further. The only way to get
to state four (besides itself or six) was through state five, the third highest state (behind
four and six) for paging activity. Therefore, the system gradually builds up to high levels

of paging and then gradually dissipates back down to nothing.

As in Sample One, this stepping-stone effect is also seen for the user concurrency
measurement. The only tangible (skewness factor > 0.5) path to the state of highest user
concurrency (state three) is through state five, which contains observations with the second
largest amount of concurrency. If the transition probabilities alone are studied. the path
down from high concurrency does not appear to follow the stepping stone routine. There
are substantial probabilities for the transitions from the high concurrency states (three and
five) to the idle state (two). The low skewness factors for these transitions, prove that
these unexpected high transition probabilities are caused by the large size of cluster two.
With this information, the stepping stone analogy again makes sense with exits from state
three going to state five, and then to state four. In conclusion, as in Sample One, high user
concurrency does not come suddenly, but is built up gradually and then gradually dissi-

pates.
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CHAPTER SIX

CONCLUSIONS

In this thesis an analysis of an Alliant FX/8 system running Xylem (Cedar’s operating
system) at the University of Illinois Center for Supercomputing Research and Development
was presented. Results for two distinct. real, scientific workloads executing on an Alliant
FX/8 were presented. A combination of user concurrency and system overhead measure-
ments was taken for both workloads. Preliminary analysis showed that the first workload
sample was comprised of consistently high user concurrency. low system overhead. and lit-
tle paging. The second sample captured much less user concurrency. but had significant
paging and system overhead. In addition, it was determined that both the IPs (interactive

processors) and the four computational elements (CEs). while detached, were underutilized.

Statistical cluster analysis was used to extract a state transition model to jointly
characterize user concurrency and system overhead. Next, a skewness factor was intro-
duced and used to bring out the effects of unbalanced clustering when determining states
with significant transitions.

The results from the models showed that during the collection of the first sample, the
system was operating in states of high user concurrency approximately 75% of the time.
The second workload sample captured the system in high user concurrency states only 26%
of the time. In addition, it was discovered that high system overhead was usually accom-
panied by low user concurrency. The analysis also showed a high predictability of system
behavior, for both workloads. This predictability was largely due to slow changes in sys-
tem states. In particular, states with extremely high values of paging or user concurrency

are usually preceded by states with less paging and user concurrency, much like stair

climbing. The opposite effect was observed when the machine left these extreme states.

Future research will include clustering analysis of individual programs and bench-

marks to determine their behavior on the system, and to further evaluate the techniques
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developed. In addition, the same workload will be run under the two operating systems,

Xylem and Concentrix, to compare their effectiveness at utilizing the hardware provided.

Similar studies on other multiprocessor environments are also in the planning stages.
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